TRAINING KIT – HYDR01

WATER BODIES MAPPING FROM SPACE
JUNE – NOVEMBER 2017, NORTHERN POLAND
Research and User Support for Sentinel Core Products

The RUS Service is funded by the European Commission, managed by the European Space Agency and operated by CSSI and its partners.

Authors would be glad to receive your feedback or suggestions and to know how this material was used. Please, contact us on training@rus-copernicus.eu

Cover images produced by RUS Copernicus

The following training material has been prepared by Serco Italia S.p.A. within the RUS Copernicus project.

Date of publication: March 2018 (Revision – February 2019)

Version: 1.2

Suggested citation:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

DISCLAIMER

While every effort has been made to ensure the accuracy of the information contained in this publication, RUS Copernicus does not warrant its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made of this publication. Consequently, such use is at the recipient’s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The information contained in this publication does not purport to constitute professional advice.
Table of Contents

1. Introduction... 3

2. Training.. 3
 2.1 Data used.. 3
 2.2 Software in RUS environment.. 3

3. Register to RUS Copernicus.. 4

4. Request a RUS Copernicus Virtual Machine............................ 5

5. Step by step... 8
 5.1 Data download – ESA SciHUB...................................... 8
 5.2 Optical data – Sentinel-2... 13
 5.2.1 SNAP – open and explore data................................. 13
 5.2.2 Resample... 14
 5.2.3 Subset.. 15
 5.2.4 NDWI... 16
 5.3 SAR data – Sentinel-1.. 19
 5.3.1 SNAP – open and explore data................................. 19
 5.3.2 Build step-by-step processing chain.......................... 19
 5.3.3 Batch processing.. 22
 5.3.4 Corregister and average.. 24
 5.3.5 Binarization.. 28
 5.4 Visualization (QGIS) and comparison............................... 31

6. Extra steps... 33
 6.1 Atmospheric correction for S2....................................... 33
 6.2 Downloading the outputs from VM................................. 34
1 Introduction

The Research and User Support for Sentinel core products (RUS) service provides a free and open scalable platform in a powerful computing environment, hosting a suite of open source toolboxes pre-installed on virtual machines, to handle and process data derived from the Copernicus Sentinel satellites constellation.

Water surfaces, whether they are lakes, rivers, dams or ponds are crucial part of our landscapes. Timely monitoring of surface water and delivering data on the dynamics of surface waters are essential for policy and decision-making processes. Number of different methods has been developed for the extraction/delineation of waterbodies in remotely sensed data. Generally, we can split the basic methods to three categories: single band thresholding, band ratio indexes, more sophisticated methods (machine learning, etc.).

In this webinar, we will have look at the two first approaches. First, we will use Sentinel-2 optical data to calculate the Normalized Difference Water Index (NDWI). Then we will use the thresholding method with averaged stack of Sentinel-1 SAR data and see the advantages and disadvantages of each method.

2 Training

Approximate duration of this training session is two hours.

2.1 Data used

- One cloud-free Sentinel-2A Level 2A tile (Tile ID: T34UEE) acquired on August 16, 2017 [downloadable @ https://scihub.copernicus.eu/]

 S2A_MSIL2A_20170816T095031_N0205_R079_T34UEE_20170816T095031.zip

- Five Sentinel-1A IW GRDH products acquired in July and August 2017 [downloadable @ https://scihub.copernicus.eu/]

 S1A_IW_GRDH_1SDV_20170711T161931_20170711T161956_017209_01D0DB_463A.zip
 S1A_IW_GRDH_1SDV_20170711T161931_20170711T161956_017209_01D0DB_4D5C.zip
 S1A_IW_GRDH_1SDV_20170723T161931_20170723T161956_017630_01D14D_4628.zip
 S1A_IW_GRDH_1SDV_20170802T161932_20170802T161957_017771_01D03B_46C8.zip
 S1A_IW_GRDH_1SDV_20170802T161932_20170802T161957_017771_01D03B_4D5F.zip

2.2 Software in RUS environment

Internet browser, SNAP + Sentinel-2 Toolbox, QGIS, (Extra steps: Sen2Cor, Google Earth)
3 Register to RUS Copernicus

To repeat the exercise using a RUS Copernicus Virtual Machine (VM), you will first have to register as a RUS user. For that, go to the RUS Copernicus website (www.rus-copernicus.eu) and click on Login/Register in the upper right corner.

Select the option Create my Copernicus SSO account and then fill in ALL the fields on the Copernicus Users’ Single Sign On Registration. Click Register.

Within a few minutes you will receive an e-mail with activation link. Follow the instructions in the e-mail to activate your account.

You can now return to https://rus-copernicus.eu/, click on Login/Register, choose Login and enter your chosen credentials.
Upon your first login you will need to enter some details. You must fill all the fields.

4 Request a RUS Copernicus Virtual Machine
Once you are registered as a RUS user, you can request a RUS Virtual Machine to repeat this exercise or work on your own projects using Copernicus data. For that, log in and click on Your RUS Service → Your Dashboard.
Click on **Request a new User Service** to request your RUS Virtual Machine. Complete the form so that the appropriate cloud environment can be assigned according to your needs.

If you want to repeat this tutorial (or any previous one) select the one(s) of your interest in the appropriate field.

Complete the remaining steps, check the terms and conditions of the RUS Service and submit your request once you are finished.
Further to the acceptance of your request by the RUS Helpdesk, you will receive a notification email with all the details about your Virtual Machine. To access it, go to Your RUS Service → Your Dashboard and click on Access my Virtual Machine.
Fill in the login credentials that have been provided to you by the RUS Helpdesk via email to access your RUS Copernicus Virtual Machine.

This is the remote desktop of your Virtual Machine.

5 Step by step

5.1 Data download – ESA SciHUB

In this step we will download a Sentinel-2 scene from the Copernicus Open Access Hub using the online interface (Applications ➔ Network ➔ Web Browser or click the link below).

Go to https://scihub.copernicus.eu/
Go to “Open HUB”, if you do not have an account please register by going to “Sign-up” in the LOGIN menu in the upper right corner.

After you have filled in the registration form, you will receive an activation link by e-mail. Once your account is activated or if you already have an account, “LOGIN”.
Switch the rectangle-drawing mode to pan mode by clicking on the “Pan” icon in the lower left corner of the map (Green arrow) and navigate over Portugal (approximate area – blue rectangle).

Switch to drawing mode and draw a search rectangle approximately as indicated below. Open the search menu (red arrow) and specify the following parameters:

Sensing period: From 2017/07/01 to 2017/08/31

Check Mission: Sentinel-1

Satellite Platform: S1A*

Product Type: GRD

Sensor Mode: IW

Relative Orbit: 29

Press “Search” (red arrow below).
In our case, the search returns five results depending on the exact search area defined. Using the icon, import all six products to Cart.

Then open the search menu again and reset the parameters as defined below, do not forget to deselect Mission: Sentinel-1 as this time we will search for Sentinel-2 data (See TIP 1):

- **Sensing period:** From 2017/08/16 to 2017/08/16
- **Check Mission:** Sentinel-2
- **Product Type:** S2MSI2Ap

TIP 1: For the Level 2A products we are downloading, the atmospheric correction has already been applied (pre-processing of Level-1C product to a Level-2A is described in section 4.1). Since April 2017, the Level-2A products available to download for acquisitions over Europe (such as this case). Global coverage of Level 2A products is available as of December 2018.
In our case, the search returns four results depending on the exact search area defined. Using the 🔄 icon, import only the following product to Cart:

S2A_MSIL2A_20170921T101021_N0205_R022_T32TQQ_20170921T101436

Then click on the Profile icon in the upper left corner (marked with green circle above) and go to Cart. You should now have six products in your cart. Click Download Cart.

A *products.meta4* file will be downloaded to your /home/rus folder. To download our data, we will use aria2 tool. To use the tool, we first need to place the *products.meta4* file to the folder where we wish our data to be downloaded to: /shared/Training/HYDR01_WaterBodies_TrainingKit/Original

First let’s test our aria2 installation. To do this we open the Command Line (in the bottom of your desktop window) and type:

```
aria2c
```

The correct response should be as follows:

```
Usage: aria2c [OPTIONS] [URL | MAGNET | TORRENT_FILE | METALINK_FILE]...
See ‘aria2c --help’.
```

If the response is “-bash aria2c: command not found” (see 🔄 NOTE 1).

NOTE 1: If (and only if) the response is “-bash aria2c: command not found”. Then we have to install the tool, to do this in command line type: `sudo apt-get install aria2`

When requested type: Y

Then you can test you r installation again.

If you have received the correct response, then we can run the tool by typing following commands in the command line (replace <username> and <password> with your login credentials for Copernicus Open Access Hub):
The first line changes our directory to the target directory. The second line runs the download tool.

(Note that the constraint of maximum 2 parallel downloads at a time is imposed by the Copernicus Access Hub, if you increase the number, your download will fail). This might take some time.

5.2 Optical data – Sentinel-2

5.2.1 SNAP – open and explore data

Launch SNAP (icon on desktop). When the SNAP window opens click **Open product** and navigate to: `/shared/Training/HYDR01_WaterBodies_TrainingKit/Original`

Open the S2 product. Now, we will look at the product. We could visualize it in true (natural) colours but for distinguishing water surfaces, it is better to use the false colour. **Right-click** the product and click **Open RGB image window**, a new window will open. From the drop-down menu select:

Profile: Sentinel 2 MSI False-colour-Infrared

Click **OK**.

Now, let’s investigate the **cloud cover** and **water mask** bands that are the result of atmospheric correction applied to the level 2 products.

Expand the product in the **Product Explorer** window and go to **Masks → scl**. Open masks **scl_cloud_high_proba** (Cloud high probability), **scl_water** (Water) and **scl_thin_cirrus** (Thin cirrus). Pixels with detected clouds/cirrus/water will appear white in the respective masks.

Now you should have four bands open in your **View** window. Go to **Window → Tile Evenly** and then go to the **Navigation** tab, click **Zoom All**.
We can see that as expected our image is cloudless. The default water mask distributed with the Level-2 product, however, does not look very accurate.

5.2.2 Resample

The 13 bands in Sentinel-2 products do not all have same resolution (therefore size, see NOTE 2). Many operators in SNAP toolbox do not support products with bands of different sizes so first we need to resample the bands to equal resolution.

Go to Raster → Geometric Operations → Resampling (See NOTE 3).

Do not change anything in the I/O Parameters tab.

In the Resampling Parameters tab under “Define size of resampled product”, choose: By reference band from source product: B2

Click Run.

After the process is completed, if a window appears, click Yes.

Close all the views we have open and expand the product structure by clicking the + sign on the left of the product name, then expand the Band folder and double click B8 (842nm) - (NIR).

5.2.3 Subset

In the next step, we will subset the image to our area of interest. Click on the resampled product in the Product Explorer tab, to highlight it. Then go to Raster → Subset and in the Spatial Subset tab, set Pixel coordinates to:

Scene start X: 200
Scene start Y: 0
Scene end X: 7300
Scene end Y: 6850

Keep the other Subset tabs as by default. Click OK.

A new product will appear in the Product Explorer tab [3]. Right-click the new product and click Save Product. In the pop-up window click Yes, in the next window navigate to /shared/Training/HYDR01_WaterBodies_TrainingKit/S2_Processing and save the subset data.

Right-click the product [3] and click Open RGB image window and from the dropdown menu select:

Profile: Sentinel 2 MSI Land/Water

Click OK.
5.2.4 NDWI

To detect the water bodies, we will use the Normalized Difference Water Index – NDWI. It was proposed by McFeeters\(^2\) and it is designed to:

i) maximize the reflectance of the water body in the green band;

ii) minimize the reflectance of water body in the NIR band. McFeeters’s NDWI is calculated as:

\[
NDWI = \frac{\text{Green} - \text{NIR}}{\text{Green} + \text{NIR}} = \frac{B_3 - B_8}{B_3 + B_8}
\]

Right-click on the newly created subset product [3], select BandMaths and set:

Name: NDWI

Deselect “Virtual (save expression only, don’t store data)” - we want the band to be stored!

Click on “Edit Expression” and set as Expression: \((B_3 - B_8) / (B_3 + B_8)\)

Click OK in both windows.
The open water pixels appear much brighter than other surfaces. Now, let’s create another new band that will only contain water surfaces.

We will set the **threshold** for pixel to be classified as water to >= 0.

Right click the product [3] and go to **BandMaths** again. Set:

- **Name**: NDWI_mask
- **Deselect “Virtual (save expression only, don’t store data)”** - we want the band to be stored!

Click on “**Edit Expression**” and set as **Expression**: if NDWI >= 0 then 1 else 0

Click **OK** in both windows.

You can also go to **Window → Tile Horizontally** to see the difference between the **NDWI** and the **NDWI_mask** bands.
Finally, right click on product [3] and go to **Save Product**. If a window appears click **Yes** and navigate to: `/shared/Training/HYDR01_WaterBodies_TrainingKit/S2_Processing` to save it. If another window appears, click **Yes** as well.

Then go to **File** ➔ **Export** ➔ **GeoTIFF**.

Click on **Subset** and go to **Band Subset** tab; select only **NDWI_mask** band and click **OK**. Save as **File name**: `S2_watermasks.tif`. Finally click **Export Product**.

TIP 2: The NDWI can sometimes erroneously enhance also very bright build-up areas, and numerous modifications have been proposed. We will test a modified version designed to minimize the build-up noise. It uses the short wave infrared (SWIR) band instead the near infrared (NIR) as the absorption of water surfaces is greater in SWIR than in NIR. MNDWI is calculated as:

\[
NDWI = \frac{\text{Green} - \text{SWIR}}{\text{Green} + \text{SWIR}} = \frac{B_3 - B_{11}}{B_3 + B_{11}}
\]

Right click on the newly created subset product [3], select BandMaths and set:

Name: NDWI

Deselect Virtual “(save expression only, don’t store data)” – we want the band to be stored!

Click on “**Edit Expression**” and set as Expression: \((B_3 - B_{11})/ (B_3 + B_{11})\)

Create mask the same way as for NDWI. Compare both masks. What are the differences? Are there differences in detail? Can you explain why?
Our first water mask is ready. Take some time to compare it to the RGB image. Now, let’s derive the water mask from SAR data so we can compare.

Close the SNAP window. Any dialog windows that might appear asking you to save the data, click Yes.

5.3 **SAR data – Sentinel-1**

5.3.1 **SNAP – open and explore data**

Launch SNAP (icon on desktop). When the SNAP window opens click **Open Product**, navigate to `/shared/Training/HYDR01_WaterBodies_TrainingKit/Original` and open the five S1 products. Right-click each product and expand the **Bands** folder. Then double click the **Intensity_VH** band.

5.3.2 **Build step-by step processing chain**

We will now need to pre-process all five images but doing this one by one would be quite time consuming so let’s use the **Batch Processing** tool available in SNAP to process all images at the same time.
To use the tool, we first need to define the process we want to apply and all its steps. We can do this using the GraphBuilder tool. The nice thing about the GraphBuilder is also that no intermediate product will be physically saved, only the end-product, which saves valuable disk space.

Go to Tools → GraphBuilder.

At the moment, the graph only has two operators: Read (to read the input) and Write (to write the output).

Since our Area of Interest (AOI) is quite small and there is no need to process the whole image, we start by adding a Subset operator. To add the operator right-click the white space in the graph builder and go to Add → Raster → Geometric → Subset.

A new operator rectangle appears in our graph and a new tab appears below. Now connect the new Subset operator to the Read operator by clicking to the right side of the Read operator and dragging the red arrow towards the Subset.

In the next step, we will update the orbit metadata (See NOTE 4). To add the operator, right-click the white space between existing operators and go to Add → Radar → Apply-Orbit-File. Connect the new Apply-Orbit-File operator with the Subset operator.

NOTE 4: The orbit state vectors provided in the metadata of a SAR product are generally not accurate and can be refined with the precise orbit files, which are available days-to-weeks after the generation of the product. The orbit file provides accurate satellite position and velocity information. Based on this information, the orbit state vectors in the abstract metadata of the product are updated. (SNAP Help)

The next step will remove the thermal noise (See NOTE 5). We add this operator by right-clicking the white space somewhere left of the resample operator and going to Add → Radar → Radiometric → ThermalNoiseRemoval. Connect the ThermalNoiseRemoval operator with the Apply-Orbit-File operator.
Now, we can add the **Calibration** operator. The objective of SAR calibration is to provide imagery in which the pixel values can be directly related to the radar backscatter. Though uncalibrated SAR imagery is sufficient for qualitative use, calibrated SAR images are essential to quantitative use of SAR data (See □ NOTE 6).

To add the operator go to **Add → Radar → Radiometric → Calibration**. Connect the **ThermalNoiseRemoval** operator to the **Calibration** operator.

Our data are still in radar geometry, moreover due to topographical variations of a scene and the tilt of the satellite sensor, the distances can be distorted in the SAR images. Therefore, as the last step of our preprocessing, we will apply terrain correction to compensate for the distortions and reproject the scene to geographic projection (See □ NOTE 7).

To add the operator, go to **Radar → Geometric → Terrain Correction → Terrain-Correction** then connect the **Calibration** operator to it.

At the moment, do not change anything in the parameter tabs and save the graph by clicking **Save** at the bottom of the window.

Navigate to: ```/shared/Training/HYDR01_WaterBodies_TrainingKit/S1_Processing``` and save the graph with the **File Name**: **Graph_preprocess.xml**.

Close the **GraphBuilder** window.
5.3.3 Batch processing

In the **Product Explorer** window, we select (highlight) the product [1] (11 July 2017). Now we can open the Batch Processing tool (**Tools → Batch Processing**).

We will add the opened products by clicking **Add Opened** on the upper right (second icon from the top) and click **Refresh**. Then, we click **Load Graph** at the bottom of the window, navigate to our saved graph, and open it. We see that new tabs have appeared at the top of window corresponding to our operators with the exception of **Write**; this is correct, as these parameters will be set in the **I/O Parameters** tab.

In the **I/O Parameters** tab set the directory to: `/shared/Training/HYDR01_WaterBodies_TrainingKit /S1_Processing` and then deselect the “Keep source product name”.

![Batch Processing GUI](image)

In the **Subset** tab press **Ctrl** and select bands **Amplitude_VH** and **Intensity_VH** and then click to select the **Geographic Coordinates** option. Paste the area of interest definition in WKT (well know text) format to the text window below the map.

```
```

Click **Update** and then click the **Zoom-in** icon to see your subset on the map.
In the Apply-Orbit-File tab we can accept the default settings.

In the ThermalNoiseRemoval tab select VH polarization and make sure that “Remove Thermal Noise” option is selected.

In the Calibration tab we will also accept all default settings.

In the Terrain-Correction tab: Map Projection -> Predefined CRS. Click on “Select” and choose: AUTO: 42001 – WGS 84 / Auto UTM. Leave all the other default settings.
Click **OK** in both windows and finally click **Run** to pre-process our images.

Approximate processing time: 10 minutes depending on machine

Close the **Batch Processing** window. Now you should have five new products in the **Product Explorer** tab. Select the original products [1-5], right-click on them and click **Close 5 Products**.

5.3.4 Coregister and average

Now, we need to add all our pre-processed products to a single coregistered stack, so we can calculate the 2-month mean. Unfortunately, coregistration is rather heavy and time consuming, so be patient. Averaging the observations will greatly decrease the speckle and make the delineation of water bodies much more accurate.

Go to **Radar → Coregistration → Coregistration**.

In the **ProductSet-Reader** tab, we will add the opened products by clicking **Add Opened** on the upper right (second icon from the top) and then click **Refresh**.
In the **CreateStack** tab, set **Resampling Type**: “Nearest Neighbour” and click **Find Optimal Master**.

In the **Cross-Correlation** tab, leave the defaults.

In the **Warp** tab, leave the defaults.

In the **Write** tab, change the name to **S1A_IW_summerStack** make sure that the output directory is: `/shared/Training/HYDR01_WaterBodies_TrainingKit/S1_Processing`
Click **Run**.
Approximate processing time: 20 minutes depending on machine

Close the **Coregistration** window. A new product [11] has appeared in the **Product Explorer** window. Expand it and have a look at the contents of the **Bands** folder. It contains five bands, each corresponding to one acquisition date. Double click the first band to open it in **View** window.

We can see the extent of the image is larger than that of our S2 subset (marked in red above) although we have used the exact coordinates. This is because we have performed the subset before we have projected (assigned coordinate system) the product. We can correct this by using a simple subset again. Go to **Raster → Subset**.

In the **Spatial Subset** tab click on the **Geo Coordinates** and set:

- North latitude bound: 54.148
- West longitude bound: 21.030
- South latitude bound: 53.527
- East longitude bound: 22.101

Click **OK**.

New product [12] has appeared in the **Product Explorer** tab.

Right-click the product and go to **Open RGB Image Window**.
This we do just out of interest, by creating the multi-temporal RGB combination we can see the changes that have occurred between the acquisitions. These will mostly be related to harvested fields. We will not see many changes in the water bodies unless for example, the water level changed significantly, or an area was flooded. Now, let’s calculate the average backscatter.

Go to Radar → Coregistration → Stack Tools → Stack Averaging. In the I/O Parameters tab make sure that the directory is: /shared/Training/HYDR01_WaterBodies_TrainingKit/S1_Processing.

In the Processing Parameters tab, set Statistics: Mean Average.

Click Run.
A new product [13] was created; the Bands folder contains a single band with averaged values.

If we open all the bands of the stacked product and the averaged band and use the Window \(\rightarrow\) Tile Evenly tool, then we can see that the averaged image appears much smoother.

5.3.5 Binarization

To separate water from non-water on an image we need to have enough separability between the two classes. Let’s close all views except for the averaged band.

Then go to the Product Explorer window and right-click on the averaged band “Sigma0_VH”.

Go to Linear from/to dB and click yes to add the dB band as new virtual band. This operation transforms the histogram to logarithmic scale and helps us to better distinguish between water and other surfaces.
Let’s inspect the histogram to find a good threshold value. In addition, we can also draw some polygons over water surfaces and extract statistics...

Then we can go to Analysis → Statistics.

Tick the “Use ROI mask” option, select geometry and then click Refresh.

In our case, just by visual analysis we will select value -25 as our threshold. Go to Product Explorer tab and right-click the \textit{Sigma0_VH_dB} band.

Select Band Maths... and set as Name: “\textit{water_mask}”. Deselect the Virtual option. Then click on Edit Expression ... and type:

\[
\text{if } \$13.\text{Sigma0_VH_db} < -25.0 \text{ then 1 else 0}
\]
Click OK in both windows.

Finally, right click on product [13] and go to Save Product.

Then go to File → Export → GeoTIFF. Click on Subset and go to Band Subset tab; select only “water_mask” band and save as S1_watermask.tif at: /shared/Training/HYDR01_WaterBodies_TrainingKit/S1_Processing and click on Export Product.
5.4 Visualization (QGIS) and comparison

Let’s compare the 2 masks we have produced. To be able to do so, we will open the saved masks (GeoTIFF) in QGIS.

Go to Application → Processing → QGIS Desktop. Click on the Add Raster Layer button located in the left panel, navigate to: /shared/Training/HYDR01_WaterBodies_TrainingKit/S2_Processing select the saved S2_watermask.tif and click Open.

Load also the S1_watermask.tif from the S1_Processing folder.

Right click the S1_watermask in the Layers Panel and go to Properties. In the Transparency tab set:
Global transparency: 50 %
Additional no data value: 0

Then, go to Style tab and set Render type to Singleband pseudocolor, scroll down and click to add a value to the colour table. Click the value 0 and change it to 1. Then double-click the Colour field and change the colour to blue. Click OK.

Now do the same for the S2_watermask but change the colour to red and leave the transparency at 0%.
Finally, we can add a base-map to link our water masks to GIS data. Click on Web → **OpenLayers plugin** → **Google Maps** → **Google Satellite** (See NOTE 8). Then in the **Layer Panel** click on the Google Satellite layer and drag it below our raster layers.

In case Google Satellite is not available for any reason, use a different layer, e.g. Bing → Bing Aerial.

NOTE 8: In case the **OpenLayers** plugin is not installed, click on **Plugins** → **Manage and Install Plugins**. Select the “All” tab on the left side panel and write “OpenLayers plugin” on the search box. Select the plugin on the list and click “Install Plugin”. Restart QGIS to finalize the installation.

THANK YOU FOR FOLLOWING THE EXERCISE!
6 Extra steps

6.1 Atmospheric correction for S2

Solar radiation reflected by the Earth’s surface to satellite sensors is affected by its interaction with the atmosphere. The objective of applying an atmospheric correction is to determine true surface (Bottom-Of-Atmosphere, BOA) reflectance values from the Top-Of-Atmosphere (TOA) reflectance values, by removing atmospheric effects. (See NOTE E1) Atmospheric correction is especially important in cases where multi-temporal images are compared and analysed as it is in our case (pre-fire and post-fire images).

 NOTE E1: The radiance reaching the sensor is a result of following components:

1. Radiation from the sun and, scattered into the field of view of the sensor by the atmosphere without reaching the surface.
2. Direct radiation that goes through the atmosphere without being absorbed or scattered, reaches the sensor after being reflected by the target pixel.
3. Radiation scattered by the atmosphere into the target pixel and reflected back towards the sensor.
4. & 5. Direct or diffuse radiation reflected or scattered by the surrounding areas into the field of view of the sensor. This effect is so called “adjacency effect” or “blurring effect”.
5. Diffuse radiation coming from the adjacent features into the field of view of the sensor.
6. So-called trapping effect and it is a part of the radiation reflected from the surface into the air column above the surface being scattered and ultimately reaches the sensor.

In this tutorial, we will use the Sen2Cor processor. Sen2Cor is a processor for Sentinel-2 Level 2A product generation and formatting; it performs the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere Level 1C input data. Sen2Cor creates Bottom-Of-Atmosphere, optionally terrain and cirrus corrected reflectance images; additional, Aerosol Optical Thickness, Water Vapour, Scene Classification Maps and Quality Indicators for cloud and snow probabilities.

To run the atmospheric correction, we first need to go out of SNAP and in File Manager navigate to the folder where our data are saved: \shared\Training\HYDR01_WaterBodies_TrainingKit\Original and unzip the product by right-clicking each and going to “Extract Here”. This will create a folder with suffix “.SAFE”.

Then go back to SNAP and go to Optical → Thematic Land Processing → Sen2Cor.
In the I/O Parameters we need to click on ... next to the product name and navigate inside of the first product folder (".SAFE" suffix). Then, open the MTD_MSIL1C.xml file. In the Processing Parameters tab change the resolution to “ALL” and select “Display execution output”. Click Run.

This is rather a time demanding process and requires approximately 30 minutes per image (with 8GB RAM).

The process creates a new Level 2-A product in the .SAFE format in the original folder. Now let’s load the result to SNAP.

Click Open product 📁, navigate to: /shared/Training/HYDR01_WaterBodies_TrainingKit/Original then open the Level-2A product folder for 2016: S2* _MSIL2A_* .SAFE
And open the MTD_MSIL2A.xml

6.2 Downloading the outputs from VM

On your keyboard, press Ctrl+Alt+Shift. A pop-up window will appear on the left side of the screen. Click on the bar below Devices, the folder structure of your VM will appear. Navigate to your Processing folder and double click any file you want to download.
FOLLOW US!!!